Szukanie podobieństw w tekstach przy pomocy Spark ML – efekty

Szukanie podobieństw w tekstach przy pomocy Spark ML – efekty

Co ty na to, żeby zbudować system, dzięki któremu wyszukujemy podobne wypowiedzi polityków? Tak dla sprawdzenia – jeśli jeden coś powiedział, poszukamy czy jego oponenci nie mówili przypadkiem podobnie. Dzięki temu być może oczyścimy trochę debatę – świadomość, że nasi przedstawiciele nie różnią się aż tak bardzo, może być bardzo orzeźwiająca. Jednak taki mechanizm to dużo danych do przetworzenia i zinterpretowania. Dodatkowo tekstowych.

Dziś w artykule o podobnym problemie przy wykorzystaniu Apache Spark. Porozmawiamy więc o sztucznej inteligencji – a konkretniej machine learning, natural language processing (NLP) oraz text similarity. Wyjątkowo jednak nie w kontekście pythona, a właście Scali i Sparka.

Text Similarity (AI) w Apache Spark

Wróćmy do problemu podobieństw wypowiedzi polityków. Oczywiście musimy najpierw zebrać dane. Ile może ich być? Jeśli bazujemy na krótkich wypowiedziach – ogromne ilości. Wszystko zależy od tego jak bardzo chcemy się cofać w czasie i jak wiele osób wziąć pod lupę (Sejm? Senat? Rząd? Polityków lokalnych? A może zagranicznych?). Sumarycznie można się pokusić jednak o miliony, dziesiątki a nawet setki milionów krótkich wypowiedzi. A im bardziej w używaniu jest Twitter, tym więcej.

Pytanie, czy do tak dużych zbiorów można użyć bibliotek Pythonowych? Wiele z nich bazuje na jednej maszynie, bez możliwości naturalnego przetwarzania rozproszonego. Oczywiście nie wszystkie i z pewnością jest tam najmocniej rozwinięte środowisko do NLP. Na tym blogu skupimy się dziś jednak na mało popularnym pomyśle. Sprawdzimy na ile naprawdę poważnym rozwiązaniem może być Apache Spark w świecie machine learning. Dziś pokażę owoc eksperymentu nad przetwarzaniem tekstu w Apache Spark.

Po pierwsze: efekt

Zanim wskażę jakie techniki można zastosować, spójrzmy co udało się osiągnąć.

Zacznijmy od podstawowej rzeczy

  1. Bazujemy na zbiorze, który ma ~204 tysiące krótkich tekstów – konkretnie tweetów.
  2. Tweety dotyczą trzech dziedzin tematycznych:
    • COVID – znakomita większość (166543 – 81,7%)
    • Finanse – pewna część (28874 – 14,1%)
    • Grammy’s – margines (8490 – 4,2%)
  3. W ramach systemu przekazujemy tekst od użytkownika. W odpowiedzi dostajemy 5 najbardziej podobnych tweetów.

Efekty

Poniżej kilka efektów. Chcę zauważyć, że sporą rolę odgrywa tutaj kwestia nierówności zbiorów. Dane związane z ceremonią przyznania nagród Grammy’s są właściwie marginalne (nieco ponad 4%). Tweety COVIDowe zapełniają natomiast nasz zbiór w ponad 80%. Jest to istotne, gdyż przy sprawdzaniu efektywności najbardziej naturalnym odniesieniem jest zwykłe prawdopodobieństwo. W zbiorze 100 “najbardziej podobnych” tekstów (do jakiegokolwiek), ok 80 powinno być związanych z COVID-19, nieco ponad 10 to najpewniej finansowe, natomiast muzyczne będą w liczbie kilku sztuk.

Text Similarity w Apache Spark na przykładzie wywołania tweetów związanych z COVID-19

Fraza covidowa, najprostsza

Wyszukiwania zacznijmy od najprostszego podejścia: frazą wyszukiwaną niech będzie podobna do tej, o której wiemy, że istnieje w podanym zbiorze. Liczba w nawiasie to stopień podobieństwa – od -1 do 1 (gdzie 1 to identyczne).

Fraza: Praying for health and recovery of @ChouhanShivraj . #covid #covidPositive (zmiany są bardzo drobne).

Podobne wykryte frazy:

  1. Praying for good health and recovery of @ChouhanShivraj (0.9456217146059263)
  2. Prayers needed for our vascular surgeon fighting Covid @gpianomd #COVID19 #Prayers #frontlinedoctors (0.8043357071420172)
  3. Prayers for your good health and speedy recovery from #COVID19 @BSYBJP (0.801822609000082)
  4. Hon’ble @CMMadhyaPradesh Shri @ChouhanShivraj Ji tested #COVID19 positive. Praying for his speedy recovery. (0.7740378229093525)
  5. I pray for Former President Shri @CitiznMukherjee speedy recovery. Brain tumor wounds ji a lot, God may heal his p…  (0.7626450268959205)

Jak widać każda z tych fraz pochodzi z grupy COVIDowych. Dodatkowo dotyczy pragnień szybkiego powrotu do zdrowia oraz modlitwy za cierpiących.

Fraza finansowa, trudniejsza

Przejdźmy do czegoś odrobinę trudniejszego – sprawdźmy coś finansowego. Niech będzie to fraza, którą absolutnie wymyślę od początku do końca.

Fraza: Ford’s earnings grow another quarter

Podobne wykryte frazy:

  1. XLE Goes Positive Brent UP Big & WTI UP Big Rally $XOM ExxonMobil Buy Now for the Rest of 2018 GASOLINE INVENTORIE… (0.7579525402567442)
  2. Morgan Stanley Begins Covering Murphy Oil $MUR Stock. “Shares to Hit $26.0” (0.7211353533183933)
  3. Seaport Global Securities Lowers Cabot Oil & Gas Q2 2018 Earnings Estimates to $0.15 EPS (Previously $0.17).… (0.7211353533183933)
  4. William E. Ford Purchases 1000 Shares of BlackRock Inc. $BLK Stock (0.7195004202231048)
  5. Anadarko Petroleum Is On A Buyback Binge $APC (0.7187907206133348)

W tym przypadku podobieństwa są znacznie mniejsze. Warto zauważyć jednak dwie rzeczy: Po pierwsze – system wskazuje, że podobieństwa są mniejsze (0.76 to dużo mniej niż 0.95). Prawdopodobnie bardzo podobne po prostu więc nie istnieją. Druga rzecz – wszystkie podobne tweety pochodzą ze zbioru finansowych! Zbioru, który stanowi ok 14% całości danych. Pozwala to nabrać przekonania, że odpowiedzi nie są przypadkowe.

Fraza muzyczna, najtrudniejsza

Na koniec – najtrudniejsze zadanie ze wszystkich. Wybierzemy zdanie, które teoretycznie powinno pasować do zbioru będącego marginesem całości – do Grammy’s. Dodatkowo zdanie to wymyślę całkowicie. A niech tam – niech dotyczy najwspanialszej piosenkarki w dziejach! Oczywiście moim, zupełnie subiektywnym i amatorskim okiem;-).

Fraza: Amy Lee is the greatest singer of all time!

  1. Christina Aguilera & Norah Jones were the only multiple recipients for ‘Best Female Pop Vocal Performance’ in the 2000s. (0.7306395709876714)
  2. @billboardcharts @justinbieber @billieeilish @oliviarodrigo @taylorswift13 @kanyewest Taylor the only real queen let’s be honest she deserves the Grammy for evermore but the #GRAMMYs wont give her. (0.7019156211438091)
  3. #GRAMMYs keep doing dirty to Lana Del Rey? Even though her talent is among the best this world has to offer (0.6868772967554752)
  4. Kylie Minogue deserved at least one nomination for Magic #GRAMMYs (0.6820704278110573)
  5. The answer will always be YES. #GRAMMYs #TwitterSpaces #SmallBusinesses #BlackOwned #adele #bts (0.6816903814884498)

I to właśnie te wyniki, przyznam, najmocniej wprowadziły mnie w euforię i ekscytację, gdy je zobaczyłem. I to nie tylko z powodu mojego niekłamanego uczucia do wokalistki Evanescence. Gdy spojrzymy na to “zdrowym, chłopskim okiem”, nie ma tutaj słowa o Grammy’s. Nie ma też szczególnego podobieństwa w słowach między pięcioma wymienionymi tweetami. Jest za to… kontekst. Jest podobieństwo tematyczne, jest znaczenie sensu.

A to wszystko naprawdę niedużym kosztem:-).

Text Similarity w Apache Spark na przykładzie wywołania tweetów muzycznych (z Grammy’s)

Apache Spark a text similarity – wykorzystane techniki

No dobrze, ale przejdźmy do konkretów – co należy zrobić, aby dostać takie wyniki? Tu zaproszę od razu do następnego artykułu, w którym pokażę dokładniej jak to zrobić. Dzisiejszy potraktujmy jako zajawkę. Żeby nie przeoczyć następnego – zapisz się na newsletter;-).

 

Loading

Po dość długich staraniach i wyeliminowaniu kilku ewidentnie beznadziejnych podejść, za sprawą kolegi Adama (za co ukłony w jego stronę) zacząłem czytać o embeddingach USE (Universal Sentence Encoder). Od razu powiem, że moją podstawową działką jest Big Data rozumiane jako składowanie i przetwarzanie danych. Sztuczna inteligencja to dopiero temat, który badam i definitywnie nie jestem w nim specem (choć parę kursów w tym kierunku ukończyłem i coś niecoś działałem). Liczę jednak, że obcowanie ze specami w tej działce (takimi jak właśnie Adam;-)) pomoże w eksploracji tego ciekawego gruntu.

Wróćmy jednak do USE. To była istne objawienie. Warto zaznaczyć, dla tych którzy nie do końca są zaznajomieni z tematyką machine learning, że komputer oczywiście tak naprawdę nie rozumie tekstu. Żeby mógł wyszukiwać podobieństwa, dzielić na grupy, uczyć się klas itd – potrzebne są liczby. Stąd wziął się pomysł sprowadzania tekstów do wektorów i różnego rodzaju wectorizerów – mechanizmów, które sprowadzają tekst do wektorów. Wektorów, czyli tablic jednowymiarowych o określonej długości (tu można się pomylić. Wielowymiarowe wektory dalej są jednowymiarowymi tablicami). Nieco bardziej rozbudowaną wersją są embeddingi, które mogą przechowywać w sobie wektory, natomiast które posiadają dodatkowe cechy pomocne. Jedną z nich (kluczową?) jest to, że słowa które chcemy zamienić na liczby, nabierają kontekstu. Pomaga to szczególnie mocno w niektórych przypadkach – na przykład naszych tweetów, które zawierają krótkie, czasami niezbyt treściwe przekazy. Jeśli będziemy je porównywali w prosty, czysto “statystyczny” sposób zestawiając wyrazy, nie uzyskamy odpowiedniego efektu.

Machine Learning w Apache Spark

Aby korzystać z dobrodziejstw ludzkości w zakresie machine learning, w tym text similarity w Apache Spark, należy wykorzystać bibliotekę Spark MlLib (w repozytorium Mavena dostępna tutaj). Tylko tutaj UWAGA! Wewnątrz biblioteki MlLib dostępne są dwa “rozgałęzienia”:

  1. Spark MlLib – starsza (choć wciąż utrzymywana) wersja, operująca bezpośrednio na RDD.
  2. Spark ML – nowocześniejsza część biblioteki. Możemy tutaj pisać operując na Datasetach i Dataframe’ach.

Wracając do technik – jednym z embeddingów jest właśnie USE. Jest on znacznie znacznie lepszym rozwiązaniem niż nieco podstarzały word2Vec, o innych, prostszych (np. Count Vectorizer) nie wspominając. Problem? Ano właśnie – nie wchodzi on w skład podstawowej biblioteki MlLib. Nie jest to jednak problem nie do przeskoczenia. Istnieje w Internecie gotowy zestaw rozwiązań, które poszerzają podstawowe biblioteki Sparkowe. Mam tu na myśli John Snow Labs. Udostępniają oni naprawdę imponująca liczbę algorytmów, które po prostu możemy wykorzystać – i to z całkiem niezłym skutkiem. Omówienie poszczególnych algorytmów można znaleźć tutaj. Samą bibliotekę do przetwarzania tekstu, czyli Spark-NLP zaciągniemy bez problemu z głównego repozytorium Mavena. To dzięki niej możemy rozwiązać bardzo wiele problemów, m.in. text-similarity w Apache Spark;-)

Jak technicznie dokładnie to zrobić, pokażę w kolejnym artykule. Już teraz zapraszam do subskrybowania;-).

Cosine Similarity

Skoro tylko udało mi się już porządnie sprowadzić tekst do jakiś ludzkich kształtów (czyli liczb;-)), należało znaleźć najlepszy z nich. Najlepszy – czyli najbardziej podobny do takiego, który wprowadzę. Dość dużo spędziłem czasu na szukaniu różnych gotowych rozwiązań. W końcu zdecydowałem się na zastosowanie czystej matematyki. Mowa tu o cosine similarity. Nie mam pojęcia jak to się tłumaczy na polski, a “podobieństwo kosinusowe” mi po prostu nie brzmi (ani nie znalazłem żeby tak się mówiło).

Z grubsza sprawa jest dość prosta – chodzi o to, żeby znaleźć podobieństwo między dwoma (niezerowymi) wektorami osadzonymi na jakiejś płaszczyźnie. Nie jest to żadna technika rakietowa i nie dotyczy ani NLP, ani nawet machine learning. Dotyczy zwykłej, prostej, nudnej matmy i można się zapoznać nawet na wikipedii.

Wzór na cosine similarity wygląda następująco:

{\displaystyle {\text{cosine similarity}}=S_{C}(A,B):=\cos(\theta )={\mathbf {A} \cdot \mathbf {B} \over \|\mathbf {A} \|\|\mathbf {B} \|}={\frac {\sum \limits _{i=1}^{n}{A_{i}B_{i}}}{{\sqrt {\sum \limits _{i=1}^{n}{A_{i}^{2}}}}{\sqrt {\sum \limits _{i=1}^{n}{B_{i}^{2}}}}}},}

Efekt jest prosty: wynik jest od -1 do 1. Im bliżej 1 tym bliższe są oba wektory. Problem? Oczywiście – w Sparku nie ma implementacji;-). Na szczęście jest to wzór na tyle prosty, że można go sobie zaimplementować samemu. Ja to zrobiłem w ramach UDF.

Podsumowanie

I to tyle! Tak więc można sprawę uprościć: zebrałem tweety, użyłem USE (od John Snow Labs) oraz cosine similarity. W efekcie dostałem naprawdę solidne wyniki podobieństwa. I to nie tylko jeśli chodzi o sam tekst, ale przede wszystkim jego znaczenie.

Już w najbliższym artykule pokażę jak dokładnie napisałem to w Sparku. Jeśli interesują Cię zagadnienia dotyczące Sparka, pamiętaj, że prowadzimy bardzo ciekawe szkolenia – od podstaw. Pracujemy z prawdziwymi danymi, na prawdziwych klastrach no i… cóż, uczymy się prawdziwego fachu;-). Jeśli interesuje Cię to – Zajrzyj tutaj!

Zostań z nami na dłużej. Razem budujmy polskie środowisko Big Data;-). Jeśli chcesz pozostać z nami w kontakcie – zapisz się na newsletter lub obserwuj RDF na LinkedIn. Koniecznie, zrób to i razem twórzmy polską społeczność Big Data!

 

Loading
Inspiracja: prawdziwe datasety, które pomogą Ci w nauce Big Data

Inspiracja: prawdziwe datasety, które pomogą Ci w nauce Big Data

Któż z nas nie miał w szkole dosyć matematycznych zadań o “Ali Kasi i Małgosi, które dzieliły między sobą truskawki”? Albo na statystyce o obliczaniu prawdopodobieństwa stosunku “kul białych do kul czarnych które pozostaną w urnie po wyciągnięciu jednej z nich”? Niestety, nieżyciowe (czy gorzej – pseudożyciowe) przykłady zabijają piękno nauki. Nauki, która jest przecież wspaniałym narzędziem do poznawania i budowania świata.

Prawdziwe datasety do nauki Big Data – czemu warto?

Dokładnie tak samo jest w Big Data. Poznając technologie, często bazujemy na przykładach nudnych, oklepanych, o których wiemy, że nie sprawią nam żadnych niespodzianek. Są to “zbiory danych” które tworzymy sami. W locie, na potrzeby przykładu. Nierealne, w zbyt dużej liczbie potrafiące przyprawić o mdłości.

Oczywiście proste, jasne przykłady też są potrzebne! Sam je na szkoleniach stosuję. Warto jednak od samego początku obcować z prawdziwymi danymi. Choćby dlatego, że takie dane przeważnie nie są najpiękniejsze. Mają swoje wady, brudy, dziury. Mają więc wszystko to, co cechuje prawdziwe dane. Te, z którymi będziemy się zmagać w komercyjnych projektach. Dane, które zaskakują. Dane, które sprawiają problemy i zmuszają do wytężenia mózgownicy.

Poza tym jednak, są to dane, które najzwyczajniej w świecie są po prostu… ciekawe. Pracując z nimi możemy się czegoś dowiedzieć. Niekoniecznie musi nam się to przydać podczas najbliższej randki z Żoną czy w trakcie spotkania z kumplami w pubie. Wystarczy jednak, że cokolwiek o świecie dowiemy się dzięki naszej pracy z danymi. Satysfakcja gwarantowana. Podobnie zresztą jak to, że zaczną nam wpadać do głowy nowe pomysły, które pomogą nam w analizie danych.

Poniżej prezentuję listę kilku zestawów danych z których można skorzystać, które urozmaicą naszą naukę Big Data;-). Dla smaczku dodam jeszcze, ze w wielu przypadkach datasety te są świetnie znane moim kursantom. Wykorzystuję je  – m.in. szkoleniach ze Sparka – i sprawdzają się znakomicie.

Dane z Netflixa

Od przeglądania seriali Netflixa znacznie lepiej wejść na Bigdatowy szlak walki z potworami obliczeń i odszukać niespodzianki w danych, które na temat platformy znamy.

Kto nie korzystał z Netflixa? Ten czasoumilacz już dawno przestał być jedynie towarzyszem rozrywkowych wieczorów. Obecnie jest jednym z największych nośników i propagatorów kultury (co oczywiście ma swoje plusy i minusy). Czy nie byłoby fajnie popracować z danymi na temat jego filmów, reżyserów, dat i innych ciekawych rzeczy?

Źródło: Kaggle.

Pobieranie: netflix_titles.csv.

Wielkość: 3.4 MB.

Kolumny:

show_id
type
title
director
cast
country
date_added
release_year
rating
duration
listed_in
description

 

Przestępstwa ze zbiorów policji z Bostonu (crimes)

Jeśli kogoś nie rajcuje świat seriali, to może coś poważniejszego? Proponuję wcielić się w rolę urzędnika lub analityka kryminalnego. Zbadajmy, w jakim dystrykcie strzelaniny odgrywały największą rolę w poszczególnych latach. I nie tylko to, bo także całą masę innych rzeczy. Do zestawu danych dorzucony jest zbiór offense codes.

Źródło: Jak w poprzednim punkcie, Kaggle.

Pobieranie: crime oraz offense_codes.

Wielkość: 58 mb.

Kolumny:

incident_number
offense_code
offense_code_group
offense_description
district
reporting_area
shooting
occured_on_date
year
month
day_of_week
hour
ucr_part
street
lat
long
location

 

Użytkownicy telekomów (telecom users)

Być może przestraszyłeś/aś się nieco ponurych tematów, które podsunąłem wyżej. W takim razie mam coś bardzo przyziemnego. Czas na analizę użytkowników telekomów. Dataset znacznie mniejszy, natomiast wciąż ciekawy i można tu spędzić chwilę agregując i monitorując;-).

Źródło: Oczywiście niezawodny Kaggle.

Pobieranie: telecom_users

Wielkość: <1MB

Kolumny:

customerID
gender
SeniorCitizen
Partner
Dependents
tenure
PhoneService
MultipleLines
InternetService
OnlineSecurity
OnlineBackup
DeviceProtection
TechSupport
StreamingTV
StreamingMovies
Contract
PaperlessBilling
PaymentMethod
MonthlyCharges
TotalCharges
Churn

Tweety

Osobiście uważam, że Twitter to jedno z najlepszych źródeł danych do pracy z Big Data. Szczególnie, jeśli mówimy o zrobieniu większego projektu na samym początku drogi. Wynika to z faktu, że API (choć ma ograniczenia) pozwala w dłuższej perspektywie zgromadzić naprawdę duże ilości danych. Do tego są to dane które są dość dobrze ustrukturyzowane, ale nie aż tak jakbyśmy mieli je dostać w idealnie przygotowanej relacyjnej bazie danych. Poza tym prezentują realną wartość wyrażanych ludzkich emocji, wiedzy, przemyśleń. Jeśli chcesz zobaczyć mój system do analizy twittera, kliknij tutaj;-).

Tylko leniuch przy dzisiejszych możliwościach narzeka na brak solidnego materiału do pracy;-)

Dziś jednak nie o pełnym potencjale API Twitterowego, a o przykładowych zbiorach tweetów (statusów). Ja ostatnio na potrzeby swoich eksperymentów NLP pobrałem 3 zbiory danych: dotyczące COVID, dotyczące finansów oraz Grammy’s. Jak na przykładowe zbiory do ćwiczeń, dane są imponujące i zawierają ponad 100 000 tweetów.

Źródło: Kaggle.

Pobieranie: covid19_tweets, financial, GRAMMYs_tweets

Wielkość: Łącznie ~80 mb

Kolumn nie załączam z prostego powodu: w każdym z datasetów są nieco inne. Warto osobiście załadować (np. do Sparka) i popatrzeć.

Wiedźmińskie imiona

Na koniec załączam “dataset” który jest być może wątkiem humorystycznym bardziej niż realnymi danymi. Jeśli jednak człowiek kreatywny, to i z tym sobie poradzi;-). Poniżej do pobrania udostepniam listę ponad 100 imion z uniwersum Wiedźmina. Po prostu imiona, nic więcej. Można jednak dorobić sztuczne id, wylosować zawody lub upodobania i poprzypisywać do… no cóż, chociażby do tweetów z punktu wyżej.

Moim zdaniem grunt, żeby nauka była owocna, ale i dawała trochę radości i zabawy. A co jak co, ale akurat praca z danymi to może być zarówno koszmarnie nudny spektakl jak i najprawdziwsza zabawa:-).

Pobieranie: nazwy postaci z Wiedźmina.

TO TYLE. Mam nadzieję, że datasety które podrzucam przydadzą Ci się i nieco ubarwią naukę Big Data. Jeśli chcesz zostać w kontakcie – zapisz się na newsletter lub obserwuj RDF na LinkedIn. Koniecznie, zrób to i razem twórzmy polską społeczność Big Data!

 

Loading
HBase: jak zbudowany jest model danych?

HBase: jak zbudowany jest model danych?

Jest rok 2005 – inżynierowie Google publikują przełomowy dokument. “Big Table Paper” opisuje jak zbudowana powinna być baza danych, żeby mogła obsługiwać ogromne ilości danych. Z dokumentu tego natychmiast korzystają dwa ośrodki mające istotny wpływ na rozwój branży. Pierwszy z nich to NSA – amerykańska Agencja Bezpieczeństwa Narodowego, znana powszechnie z olbrzymiego systemu inwigilacji oraz poprzez postać Edwarda Snowdena. Drugi to fundacja Apache wraz ze swoim projektem Hadoop, który jest fundamentem współczesnego Big Data. W NSA powstaje Accumulo, w Apache HBase.

Ta ostatnia baza błyskawicznie zdobywa popularność i pozwala na przechowywanie potężnych ilości danych. Jak działa HBase i jego model? Jak wygląda struktura danych? W kolejnych artykułach weźmiemy pod lupę architekturę oraz różne HBasowe zagwozdki.

HBase – model danych

Zanim przejdziemy do architektury, warto poznać model jaki kryje się za danymi w HBase. Model ten jest bowiem z jednej strony niezbyt intuicyjny, z drugiej sam w sobie bardzo dużo mówi o tym jakie dane powinniśmy trzymać w bazie.

Rodzajów nierelacyjnych baz danych jest całkiem sporo. Gdy będziemy szukać informacji na temat HBase znajdziemy dwa opisy. Po pierwsze – że HBase to baza kolumnowa (column oriented). Po drugie – że to baza typu klucz-wartość (key-value store).

Ogólna budowa struktury HBase

Moim zdaniem znacznie bardziej fortunne byłoby stwierdzenie, że jest to baza zorientowana na column-familie (column familie oriented database) niż kolumnowa. Problem polega na tym, że coś takiego jak column familie oriented w powszechnych metodykach nie istnieje. Najmocniej przemawia jednak do mnie key-value store i to z dwóch powodów.

Po pierwsze – wynika to z Big Table Paper i tak właśnie przedstawia się największa alternatywa HBase, czyli Accumulo. Po drugie – ten model naprawdę ma w swojej strukturze klucz i wartość.

Jak to wygląda w praktyce? Zanim przejdziemy dalej, dwa podstawowe pojęcia:

  1. Namespace – czyli inaczej “baza danych”. Na tej samej instancji możemy mieć bazę związaną ze statusami z Twittera oraz osobną bazę na kwestie finansowe.
  2. Table – czyli swojska tabelka. Tabele są z grubsza tym czym tabelki w innych bazach, czyli  pewnym opisem zestawu danych. W “normalnych” bazach tabele mają zawsze kolumny. Tu także, jednak z pewną ważną modyfikacją…

Baza typu klucz-wartość (key-value store)

Zacznijmy od podstawowej rzeczy: wszystkie wiersze w tabeli zbudowane są na zasadzie klucz-wartość. Kluczem jest rowkey, czyli unikatowy w skali tabeli id. Wartością natomiast wszystkie dane zawarte w tym wierszu. Oddaje to dość prosty, poniższy rysunek.

HBase to baza typu klucz-wartość (key-value store).

Żeby zrozumieć dobrze na czym naprawdę polega struktura danych w HBase należy wziąć pod lupę owo “value”. Można spodziewać się, że albo siedzi tam jedna, konkretna wartość (np. liczba, tekst itd), albo że spotkamy tam kolumny. Otóż… pudło! Owszem, kolumny tam znajdziemy, ale niekoniecznie tak bezpośrednio.

W HBase kolumny pogrupowane są w “rodziny”, czyli column-families (cf). Dopiero pod cf znajdują się określone kolumny. I teraz uwaga! Znajdują się, jednak w żaden sposób nie są wymuszone, czy zdefiniowane w strukturze tabeli. Pojedynczy wiersz ma następującą strukturę.

Struktura wierszy tabeli w Apache HBase

Kolumny jednak dodawane są podczas… no właśnie, podczas dodawania konkretnego wiersza. Na etapie schematu (schemy) wymuszone mamy jedynie rowkey oraz column families. Efekt jest taki, że każdy wiersz może mieć inne kolumny (choć muszą mieścić się w ramach tych samych column families). Taka struktura ma oczywiście swoje wady – a konkretnie potencjalny bałagan. Należy bardzo uważać podczas pracy na takich danych, aby nie starać się “na siłę” odwołać do kolumn których może nei być.

Z drugiej strony ma to jednak daleko idące zalety, szczególnie w świecie Big Data. Można wykorzystać HBase jako zbiornik na dane, które są delikatnie ustrukturyzowane. Dane, które mają bardzo ogólną strukturę, a w środku mogą się nieco różnić. To pozwala umieszczać na przykład dane w pierwszym kroku ETL (extract, zaraz po zaciągnięciu ze źródła, z delikatnym “retuszem”).

Poznaj HBase dokładniej i zacznij z niego korzystać

To wszystko! Dzisiejszy artykuł bardzo krótki, jedynie wprowadzający do tematyki HBase. Tak naprawdę stanowi on niezbędną podstawę pod kolejny, na temat architektury HBase. Koniecznie zapisz się na nasz newsletter, aby nie przegapić;-).

 

Loading

Jeśli chcesz poznać HBase od podstaw, pod okiem specjalisty – zapraszam na nasze szkolenie. Nie tylko krok po kroku w usystematyzowany sposób poznasz jak obsługiwać HBase. Zrobisz także dużo ciekawych ćwiczeń na prawdziwej infrastrukturze Big Data, co znacząco przybliży Cię do świata realnego. Przekonaj swojego szefa i rozpocznij swoją przygodę z HBase!

Na dziś to tyle – jeszcze raz zachęcam do newslettera i powodzenia z HBase!

Big Data w New Space – technologie BD w branży kosmicznej

Big Data w New Space – technologie BD w branży kosmicznej

XXI wiek to okres głębokiej rewolucji w kwestiach kosmicznych. Najpierw kosmos został kompletnie zdeprecjonowany (łącznie z rozważaniami nad likwidacją NASA za Barracka Obamy). Następnie powstały bezprecedensowe próby rozwinięcia podboju kosmosu przez… sektor prywatny, z Elonem Muskiem na czele. Potem do gry weszli Chińczycy, którzy postawili Stanom Zjednoczonym potężne wyzwanie i… zaczęło się. Cała ta wielka przygoda nie mogła oczywiście odbyć się bez nowoczesnych technologii przetwarzania danych. Tak Big Data weszła do New Space.

New Space

Sektor prywatny pokazał, że do kosmosu można podchodzić w zupełnie nowy sposób“Po rynkowemu” – z konkurencją, obniżając ceny, grając jakością, wskazując zupełnie nowe pola do rozwoju, a nade wszystko – robiąc na tym solidny biznes.

Odpowiedzią na rozwój sytuacji po stronie Chin oraz rodzących się nowych możliwości były śmiałe pomysły rządu Amerykańskiego – program powrotu człowieka na księżyc “Artemis” (wraz z Artemis accords) oraz utworzenie Space Force (sił kosmicznych).

Powstała całkowicie nowa domena – ochrzczona jako New SpaceWraz z “Baronami kosmosu” (wielkimi przedsiębiorcami wykładającymi swoje pieniądze na rozwój sektora kosmicznego), rywalizacją między mocarstwami i… coraz szybszym postępem technologicznym, który wykorzystywany jest obficie w życiu codziennym milionów osób.

A teraz pytanie retoryczne: czy mogą tak olbrzymie posunięcia technologiczne obyć się bez Big Data? Odpowiedź jest znana. I właśnie dlatego czas liznąć temat Big Data w New Space.

W tym artykule chcę podejść do sprawy bardzo ogólnie, fragmentarycznie i technicznie zarazem. Przedstawię kilka miejsc o których wiemy, że wykorzystywane są technologie Big Data oraz jakie dokładnie. Niech będzie to zaledwie zajawką tego olbrzymiego tematu, jakim jest Big Data w kosmosie.  Będziemy go zgłębiać w późniejszych materiałach, ale teraz – po prostu liźnijmy tą fascynującą rzeczywistość;-)

Big Data w JPL (NASA)

Pierwszym kandydatem, którego powinniśmy odwiedzić jest amerykańska NASA, a konkretnie JPL. Jet Propulsion Laboratory to centrum badawcze NASA położone w Kalifornii, które odpowiada za… naprawdę całą masę rzeczy. Niektórzy utożsamiają JPL (JPL – nie JBL, czyli firmy od naprawdę fajnych głośników;-)) z pracą nad łazikami. Słusznie, ale rzeczy które leżą w ich zasięgu jest cała masa.

Według JPL na potrzeby NASA zbierane są setki terabajtów… każdej godziny. Setki Terabajtów! Czy jesteśmy w stanie wyobrazić sobie tak gigantyczne dane? Wystarczy pomyśleć o liczbach, które się generują po miesiącu, dwóch, trzech latach… No jednym słowem: kosmos.

Czego wykorzystują do przetwarzania i analizy takich potwornych ilości danych amerykańscy inżynierowie z NASA? Mamy tu dobrze znane name technologie. Z pewnością jest ich więcej, ja dotarłem do takich jak:

  • Hadoop
  • Spark
  • Elasticsearch + Kibana

Apache Spark w JPL (NASA) – SciSpark

Oczywiście szczególnie mocno, jako freaka na tym punkcie, cieszy mnie użycie Sparka;-). Jeśli chcesz się dowiedzieć na jego temat coś więcej – dobrze będzie jak zaczniesz od mojej serii “Zrozumieć Sparka”. Pytanie – do czego wykorzystywany jest Apache Spark w JPL? Oczywiście do przetwarzania zrównoleglonego danych pochodzących z łazików, satelit i czego tam jeszcze nie mają.

Co ciekawe jednak, inżynierowie  big data w JPL utworzyli osobny program, który nazwali SciSpark. Program jest już niestety zarzucony, ale warto rzucić na niego okiem. Nie znalazłem informacji o przerwaniu prac, jednak wskazują na to przestarzałe treści, oddanie projektu fundacji Apache oraz ostatnie commity z 2018 roku. Na czym jednak polegał SciSpark? Jak wiadomo NASA i generalnie technologie kosmiczne to nie tylko wyprawy na Marsa, Księżyc i badanie czarnych dziur w galaktykach odległych o miliard lat świetlnych. To także, a może przede wszystkim, poznawanie naszego miejsca do życia – Ziemi. I program SciSpark powstał właśnie po to, aby pomagać w przetwarzaniu danych dotyczących naszego środowiska, zmian klimatycznych itd. I tak Big Data pomaga nie tylko w eksploracji “space”, ale także “ze space” pomaga poznawać Ziemię.

SciSpark Technicznie

Wchodząc w temat bardzo technicznie – program został napisany przede wszystkim w Scali. Chociaż twórcy zdają sobie sprawę, z istnienia PySparka oraz tego, że python jest naturalnym językiem Data Sciencystów, uznali że nie będzie odpowiedni ze względów wydajnościowych. Jak mówią sami:

“Ten Spark (w scali – dopisek autora) został  wybrany by uniknąć znanych problemów związanych z opóźnieniami (latency issue) wynikających z narzutu komunikacyjnego spowodowanego kopiowaniem danych z workerów JVM do procesu deamona Pythona w środowisku PySpark. Co więcej – chcemy zmaksymalizować obliczenia w pamięci, a w PySparku driver JVM zapisuje wynik do lokalnego dysku, a następnie wczytuje przez proces Pythona”.

Trzon SciSpark polega na rozszerzeniu sparkowych struktur RDD (Resilient Distributed Dataset) i utworzeniu nowych – sRDD (Scientific Resilient Distributed Dataset). Struktury te mają być dostosowane bardziej do wyzwań naukowców. W jaki sposób dokładnie, z chęcią zgłębię kod SciSparka i napiszę o tym osobny artykuł, dla chętnych geeków;-).

Poza Sparkiem, SciSpark posiada oczywiście całą architekturę systemu – z HDFSem, użytkownikami i interfejsem użytkownika (UI) włącznie. Poniżej ona – dla ciekawskich;-).

Architektura SciSpark – systemu tworzonego przez JPL (NASA).

Co ciekawe, SciSpark został upubliczniony i udostępniony fundacji Apache. Efekt jest oczywisty – teraz także i Ty możesz przeczesać kod, który pierwotnie tworzyli inzynierowie big data z NASA. Publiczne repozytorium znajdziesz tutaj.

Hadoop w NASA

Oczywiście przetwarzanie przetwarzaniem, ale gdzieś trzeba te dane przechowywać. Służy ku temu kolejna świetnie znana nam technologia, czyli Hadoop. Konkretniej być może warto powiedzieć hadoopowym systemie plików, czyli HDFS. To bardzo intuicyjny i dość oczywisty wybór, ponieważ HDFS pozwala rozproszyć pliki na wielu maszynach, co w przypadku tak ogromnych danych jest absolutnie niezbędne.

Prawdopodobnie – tu moja osobista opinia – z biegiem lat będzie trzeba przerzucić się na coś “nowszej generacji” z powodu różnych problemów i ograniczeń HDFSa. Być może dobrym pomysłem byłoby wykorzystanie Apache Ozone. Nie znalazłem informacji czy ktokolwiek w NASA wykorzystuje ten system z przyczyn dość banalnych (pomyśl tylko co wyskoczy gdy wpiszesz “NASA Ozone” w wyszukiwarkę). Wydaje mi się jednak – po pierwszych próbach wykorzystania Ozone, że musi w Wiśle jeszcze trochę wody upłynąć, zanim technologia dojrzeje.

W kontekście storowania plików, warto wspomnieć jakie to dokładnie są pliki. Oczywiście w systemach NASA budowane są liczne ETL’e, a więc i surowe pliki z pewnością są bardzo rozmaitych formatów. Jeśli jednak dane są już przetworzone, to z grubsza zapisywane są w dwóch formatach:

  1. HDF – czyli Hierarchical Data format – to format plików, który został wymyślony już w ubiegłym wieku. Od początku projektowany był tak, żeby mógł przechowywać duże dane. Od początku też – co ważne – wykorzystywany był przez NASA. Nie jest wielką tajemnicą, że tego typu instytucje nie mają zwrotności bolidu F1. Jeśli już do czegoś się przyspawają, pozostanie to z nimi na wieki;-). Więcej na temat HDF można przeczytać w tym dokumencie amerykańskiej agencji.
  2. NetCDF – czyli Network Common Data Form – to z kolei format plików (i związanych z nimi bibliotek), które przeznaczone są do przechowywania danych naukowych. Co ciekawe, pierwotnie NetCDF bazowało na koncepcji Common Data Format opracowanej przez… NASA. Potem jednak NetCDF poszło swoją drogą. To także jest format, który został zapoczątkowany już kilkadziesiąt lat temu.

Elasticsearch w JPL

Zasadniczo problem był następujący: jak w czasie rzeczywistym odtwarzać i przeglądać dane telemetryczne z bardzo, bardzo odległych źródeł. Jednym z najważniejszych był łazik Curiosity. Ten oddalony od nas o 150 milionów mil badał powierzchnie marsa (w rzeczywistości wartość ta dynamicznie się zmienia wraz z krążeniem obu planet wokół słońca). Trzeba było wykorzystać nowoczesne technologie Big Data. Jak może to wyglądać w praktyce? Przykład podaje Tom Soderstrom, Chief Technology and Innovation Officer, and Dan Isla, IT Data Scientist.

“Jeśli udałoby nam się dokładnie przewidzieć parametry termiczne, czas jazdy Curiosity mogłaby wzrosnąć dramatycznie, co mogłoby nas doprowadzić do przełomowych odkryć. I odwrotnie – błąd mógłby poważnie wpłynąć na misję za dwa miliardy dolarów.”

W kibanie można tworzyć wspaniałe środowisko do analizy. I właśnie to skusiło JPL z NASA.

Wcześniej inżynierowie JPL żmudnie zbierali dane i wrzucali je do powerpointa, gdzie potem analitycy mogli je analizować. Trwało to kupę czasu i cóż… z naszej dzisiejszej perspektywy wygląda to wręcz nieprawdopodobnie głupio. Możemy sobie tylko wyobrazić jaką rewolucję wprowadziło zastosowanie technologii Big Data. Konkretnie inżynierowie big data z NASA napisali całą platformę, nazwaną Streams, dzięki której dane mogły przychodzić w czasie “rzeczywistym” (o ile można tak nazywać komunikację z Marsem), a następnie być analizowane i przeszukiwane na bieżąco.

Właśnie w tym przeszukiwaniu i analizowaniu pomógł Elasticsearch wraz ze swoją wierną towarzyszką Kibaną. Dzięki spojrzeniu na problem przeglądania danych telemetrycznych jak na problem wyszukiwania (search problem) można było zaprzegnąć ES i rozwiązać rzeczy do tej pory nierozwiązywalne. Przede wszystkim sprawnie można było ograniczyć zakres poszukiwanych danych i skupić się tylko na tym co trzeba. Można było ładnie wizualizować i przeglądać to co zostało znalezione. Analitycy dostali w swoje ręce narzędzia, o których wcześniej się nie śniło.

JPL to niejedyne miejsce wykorzystujące Big Data w New Space

Zaczynając artykuł byłem przekonany, że zajmie on tylko kawałeczek. Teraz, gdy opowiedziałem o wykorzystaniu Big Data w NASA widzę jak bardzo się pomyliłem. Nie chcę rozwijać materiału jeszcze bardziej, dlatego już teraz zapraszam na drugą część;-). Jeśli chcesz dowiedzieć się jak Big Data wykorzystywana jest w innych obszarach New Space – zapisz się na newsletter lub obserwuj RDF na LinkedIn. Zrób to koniecznie i razem twórzmy polską społeczność Big Data!

 

Loading

Zrozumieć sparka: uruchamianie joba na serwerze (spark submit)

Zrozumieć sparka: uruchamianie joba na serwerze (spark submit)

Przygotowywałem się ostatnio do kolejnego szkolenia ze Sparka. Chciałem dla swoich kursantów przygotować solidną rozpiskę tego co i jak robić w spark submit. Niemałe było moje zdziwienie, gdy dokumentacja ani stackoverflow nie odpowiedziały poważnie na moje prośby i błagania. Cóż… czas zatem samodzielnie połatać i przedstawić od podstaw kwestię spark submit – czyli tego jak uruchamiać nasze aplikacje (joby) sparkowe na serwerze. Zapraszam!

Spark Submit – podstawy

Zacznijmy od podstaw. Kiedy piszemy naszą aplikację Sparkową, robimy to w swoim IDE. Przychodzi jednak moment, w którym musimy wysłać ją na serwer. Pytanie – jak uruchamiać poprawnie joba sparkowego na klastrze, który zawiera wiele nodów?

Służy temu polecenie spark submit. Uruchamiając je musimy mieć jedynie dostęp do naszego pliku jar lub pliku pythonowego. Wszystko poniżej będę robił na plikach jar. Musimy to polecenie wykonywać oczywiście na naszym klastrze, gdzie zainstalowane są biblioteki sparkowe. Dobrze, żebyśmy mieli także dostęp do jakiegoś cluster managera – np. YARNa.

W ramach spark submita musimy określić kilka podstawowych rzeczy:

  1. master – czyli gdzie znajduje się master. W rzeczywistości wybieramy tutaj także nasz cluster manager (np. YARN).
  2. deploy-mode – client lub cluster. W jakim trybie chcemy uruchomić nasz job.
  3. class – od jakiej klasy chcemy wystartować
  4. plik wykonywalny – czyli np. jar.

To są podstawy które muszą być. To jednak dopiero początek prawdziwej zabawy z ustawieniami joba w spark submit. W samym środku możemy wskazać znacznie więcej ustawien, dzięki którym nadamy odpowiedni kształt naszej aplikacji (jak choćby kwestia pamięcie w driverze czy w executorach). Mały hint: chociaż można za każdym razem wpisywać wszystko od początku, polecam zapisać spark submit w jednym pliku, (np. run.sh) a następnie uruchamiać ten konkretny plik. To pozwoli nie tylko archiwizować, ale przede wszystkim wygodnie korzystać z bardzo długiego polecenia.

Poniżej pokazuję przykład spark submit do zastosowania.

spark-submit \
--class App \
--master yarn \
--deploy-mode "client" \
--driver-memory 5G \
--executor-memory 15G \
rdfsuperapp.jar

Jak dokładnie rozpisać ustawienia joba?

Tak jak napisałem, opcji w spark submit jest naprawdę, naprawdę wiele. Każda z nich znaczy co innego (choć występuje dużo podobieństw) i poniżej zbieram je wszystkie (lub większość) “do kupy”. Robię to m.in. dlatego, że chcąc znaleźć znaczenie wielu z nich, musiałem nurkować w różnych źródłach. Zatem nie dziękuj – korzystaj;-).

Poniżej najczęstsze ustawinia dla spark submit.

–executor-cores Liczba corów przydzielonych do każdego executora. UWAGA! Opcja dostępna tylko dla Spark Standalone oraz YARN
–driver-cores Liczba corów dla drivera. Dostępne tylko w trybie cluster i tylko dla Spark Standalone oraz YARN
–files Pliki które dołączamy do sparka z lokalnego systemu. Potem pliki te są przesłane każdemu worker nodowi, dzieki czemu możemy je wykorzystać w kodzie.
–verbose Pokazuje ustawienia przy starcie joba.
–conf ustawienia konfiguracyjne (więcej o tym w rozdziale poniżej)
–supervise Jeśli podane, restartuje drivera w przypadku awarii. UWAGA! Dostępne tylko dla Spark Standalone oraz Mesos.
–queue Określenie YARNowej kolejki na której ma być startowany. UWAGA! Dostępne tylko dla YARN.
–packages Lista oddzielonych przecinkami adresów mavena dla plików jar, które chcemy przyłączyć do drivera lub executorów. Najpierw będzie przeszukiwał lokalne repo mavena, potem centralne oraz zdalne repozytoria podane w –repositories.Format: groupId:artifactId:version.
–exclude-pachages Lista dependencji, które mają być excludowane z listy –packages. Kolejne elementy oddzielone są przecinkiem i mają nastepujący format: groupId:artifactId.
–repositories Lista oddzielonych przecinkami repozytoriów do których uderzamy przy okazji ustawienia –packages.

Poza ustawieniami służącymi do odpowiedniego zasubmitowania joba, można przekazać także kilka kwestii konfiguracyjnych. Dodajemy je za pomocą ustawienia –conf w spark-submit. Następnie podajemy klucz-wartość. Może być podana bezpośrednio lub przy użyciu cudzysłowów, np:

--conf spark.eventLog.enabled=false
--conf "spark.executor.extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps"

Jak uruchamiać Sparka za pomocą YARNa i bez?

Spark Submit służy nam do tego, żeby uruchamiać naszego joba na klastrze. Możemy do tego wykorzystać jakiś zewnętrzny cluster manager, lub zrobić to przy pomocy Spark Standalone. Spark Standalone to taki tryb Sparka, w którym jest on postawiony na klastrze jako realnie działający serwis (z procesami itd). Cluster managerem może być YARN ale może być to także Mesos, Kubernetes i inne.

Za każdym razem gdy chcemy użyć sparka, musimy wskazać mastera (poprzez wlaśnie ustrawienie master w spark submit). Jeśli korzystamy z YARNa, sprawa jest banalnie prosta – do ustawienia master przekazujemy po prostu yarn. Reszta jest zrobiona.

Rzecz wygląda ciut trudniej, gdy chcemy wskazać za pomocą innych cluster managerów.

  1. Spark Standalone: spark://<ip>:<port> np –master spark//207.184.161.138:7077
  2. Kubernetes: –master k8s://https://<k8s-apiserver-host>:<port>
  3. Mesos: –master mesos://<host>:<port> (port: 5050)
  4. YARN: –master yarn

W niektórych dystrybucjach należy dodać także parę rzeczy, jednak są to już dodatkowe operacje. Jeśli będzie chęć – z przyjemnościa pochylę się nad bardziej szczeółowym porównaniem wyżej wymienionych cluster managerów;-).

Głodny Sparka?

Mam nadzieję, że rozwiązałem Twój problem ze zrozumieniem Spark Submit oraz sensu poszczególnych właściwości. Jeśli jesteś wyjątkowo głodny/a Sparka – daj znać szefowi. Przekonaj go, żeby zapisał Ciebie i Twoich kolegów/koleżanki na szkolenie ze Sparka. Omawiamy całą budowę od podstaw, pracujemy dużo i intensywnie na ciekawych danych, a wszystko robimy w miłej, sympatycznej atmosferze;-) – Zajrzyj tutaj!

A jeśli chcesz pozostać z nami w kontakcie – zapisz się na newsletter lub obserwuj RDF na LinkedIn. Koniecznie, zrób to i razem twórzmy polską społeczność Big Data!

 

Loading
W podróży Big Data – jak odnaleźć się w dżungli technologii?

W podróży Big Data – jak odnaleźć się w dżungli technologii?

Nie ma znaczenia czy dopiero zaczynasz swoją przygodę z Big Data, czy masz już doświadczenie, czy jesteś inżynierem, czy patrzysz na branżę stricte biznesowo. W każdym przypadku przyjdzie taki moment, w którym poczujesz się zagubiony mnogością technologii oraz tym jak bardzo są “niedookreślone”. W tym materiale postaram się wprowadzić względny porządek i przeprowadzić Cię suchą stopą przez bagno technologii obsługujących duże dane. Bierz zatem kubek mocnej jak otchłań Data Lake’a kawy – i zaczynamy!

Metodologia

Małe zastrzeżenie…

Zacznijmy od bardzo podstawowego zastrzeżenia: to co tu zaproponuję, może być bardzo łatwo podważone. Co więcej – to co tu pokażę, będzie z całą pewnością niepełne. BA! Niepełne? Dobre sobie… to będzie zaledwie muśnięcie Big Datowej rzeczywistości. Wszystko to wynika z faktu, że branża przyjęła już naprawdę pokaźne rozmiary i wprowadzenie poważnej metodologii porządkującej pojęcia oraz technologie, wymagałoby pracy dyplomowej. Być może nawet doktoratu. Czemu? Cóż – tego jest po prostu najzwyczajniej w świecie tak dużo i odpowiadają na tak wiele potrzeb, że łączenie technologii staje się prawdziwą sztuką.

Zatem powiedzmy sobie: ten artykuł jest dla Ciebie, jeśli wiesz coś niecoś o Big Data, ale wszystko zaczęło się mieszać. Zastanawiasz się nad tym które z topowych technologii służą do czego i jak można je połączyć. Z takim podejściem – zaczynamy!

Podział ze względu na przeznaczenie

Dzielić technologie można ze względu na wiele rzeczy – możemy podzielić patrząc na języki programowania, możemy podzielić patrząc czy jest to technologia chmurowa, a można poszukać pod kątem popularności. Można też – i tak zrobimy – podzielić ze względu na przeznaczenie, cel jakiemu służą.

Mój podział będzie następujący:

  1. Storages
  2. Bazy danych (nierelacyjne)
  3. Full-text search
  4. Przetwarzanie danych
  5. Komunikacja z danymi
  6. Schedulers
  7. Messaging
  8. Technologie analityczne

Jeszcze raz zaznaczę: jest to z całą pewnością obraz niepełny. Jest jeszcze trochę obszarów, które nie zostały tu wzięte pod uwagę. Ten pozwoli jednak złapać pewien punkt zaczepienia – i o to chodzi;-).

Storages

Czemu służą?: Storages (nie mam pojęcia jak przetłumaczyć to poprawnie, poza dość prostackimi “magazynami danych”) służą przechowywaniu ogromnych ilości danych w sposób możliwie prosty.

Krótki komentarz: Temat storages nie jest dobrze zdefiniowany. Niekiedy jako storage traktuje się wszystko, co przechowuje dane, a więc także bazy danych. Ja wyodrębniłem tu jednak “data storage” jako “prosty” system, który pozwala przechowywać dane w sposób mniej złożony, niż bazy. Należą więc do tego wszelkiego rodzaju rozproszone systemy plików, Data Lakes itd.

Przedstawiciele:

  1. HDFS (Hadoop Distributed File System)
  2. ADLS gen 2 (Azure Data Lake Storage gen 2)
  3. Amazon S3 (na AWS)
  4. Google Cloud Storage (na GCP)
  5. Delta Lake
  6. Kudu (wymienione także w Bazach Danych)
  7. Ozone (wymienione także w Bazach Danych)

Bazy danych (noSql)

Czemu służą?: Bazy danych służą przechowywaniu ogromnych ilości danych. Różnią się jednak nieco od Storages. Ich przeznaczenie zawiera bardziej ustrukturyzowaną formę przechowywania danych, a także możliwości bardziej zaawansowanej manipulacji danymi (przeglądania, usuwania pojedynczych rekordów itd).

Krótki komentarz: W temacie baz danych mamy bardzo dużo i coraz więcej technologii, które mogą nas interesować. Niektóre z nich nieco mieszają się ze Storages. To są właśnie te płynne granice o których już wspominałem. UWAGA! Wspominam tu jedynie o stricte big datowych, nierelacyjnych bazach danych. Nie znajdziemy tu więc popularnego mysql czy postgresql. Mamy wiele rodzajów baz danych – przede wszystkim key-value store, graph db, document store.

Przedstawiciele:

  1. HBase
  2. Accumulo
  3. MongoDB
  4. Cassandra
  5. CosmosDB (Azure)
  6. Dynamo DB (AWS)
  7. Google Cloud Datastore (GCP)
  8. Kudu (wymienione także w Storages)
  9. Ozone (wymienione także w Storages)
  10. Neo4j
  11. Druid

Full Text Searches

Czemu służą? Technologie full-text search (przeszukiwania pełno-tekstowego) także (znów!) odpowiadają za przechowywanie danych. Tym razem jednak przechowywanie zaprojektowane jest tak, aby dało się to potem bardzo dobrze przeszukiwać. Szczególnie mocny akcent położony jest na przeszukiwanie tekstu wraz z różnymi funkcjami wbudowanymi, tak aby nie było szczególnie trudne zbudowane wyszukiwarki zawierającej wyszukiwanie podobnych wyrazów czy uwzględnianie literówek.

Krótki komentarz: W przeciwieństwie do pozostałych obszarów, full-text searche zdają się być zdominowane przez dwie technologie. Co więcej – obie zbudowane są na tym samym silniku. Nie oznacza to jednak, że jest to jedyna oferta na rynku! Co ciekawe, full-text searche mogą stanowić także znakomity mix przydatny do analizy danych. Ciekawym przykładem jest zastosowanie Elasticsearcha w NASA (konkretniej JPL) m.in. do analizy danych przysyłanych przez łaziki.

Przedstawiciele:

  1. Lucene – nie jest samodzielną osobną technologią, a raczej silnikiem, na którym powstały inne.
  2. Elasticsearch
  3. Solr
  4. Sphinx

Przetwarzanie danych (processing)

Czemu służą? Technologie do przetwarzania danych oczywiście… przetwarzają dane;-). Oczywiście mowa tu o bardzo dużych danych. W związku z tym technologie te zwykorzystują mechanizmy zrównoleglania obliczeń. Można te technologie wykorzystywać do ogromnej ilości celów. Od strandardowego czyszczenia, przez harmonizację (sprowadzenie datasetów do wspólnej postaci pod kątem schematu), opracowywanie raportów statystycznych, aż po wykorzystywanie algorytmów sztucznej inteligencji.

Krótki komentarz: Technologie do przetwarzania danych podzielimy z grubsza na dwa rodzaje: batchowe i streamingowe. Batchowe to te, których zadaniem jest pobrać dużą paczkę danych, “przemielić je” i zwrócić wynik. Streamingowe natomiast działają w trybie ciągłym. W przeciwieństwie do pierwszego rodzaju – “nie kończą się”.

Przedstawiciele:

  1. Spark
  2. Spark Structured Streaming – choć zawiera się w pierwszym punkcie, zasługuje na osobne wyróżnienie.
  3. Kafka Strams – świetnie wspólgra z Kafką. Dodatkowo cechuje się daleko posuniętą prostotą.
  4. Flink
  5. Storm
  6. Map Reduce – choć obecnie nie jest już raczej implementowany w nowych systemach, to znajduje się w galerii sław i nie można o nim nie wspomnieć!
https://cdn.analyticsvidhya.com/wp-content/uploads/2020/11/repartition.jpg
Klasyka gatunku. Witamy w Sparku!;-)

Komunikacja z danymi (interfejsy SQL-like)

Czemu służą? Technologie które mam na myśli powodują, że w prostszy sposób możemy dostać się do danych, które normalnie przechowywane są w postaci plików (lub w innej postaci, natomiast wciąż kiepskiej w kontekście pracy z danymi). Przykładem jest, gdy chcemy składować pliki na HDFS, ale zależy nam na zachowaniu możliwości pracy z tymi danymi (prostych operacji przeszukiwania, dodawania itd). Technologie te dostarczają często interfejs obsługi danych składowanych w różnych miejscach, podobny do SQL.

Przedstawiciele:

  1. Hive
  2. Impala
  3. Shark
  4. BigSQL

Schedulery

Czemu służą? Kiedy tworzymy joby, bardzo często mamy potrzebe ustawienia ich aby były uruchamiane o tej samej porze. Temu właśnie służą między innymi schedulery.

Krótki komentarz:  Poza prostymi funkcjami określania kiedy jakie joby powinny zostać uruchomione, schedulery pozwalają także ustawić całą ścieżkę zależności w uruchamianiu jobów. Np. “jeśli zaciąganie danych zostanie ukończone, rozpcoznij czyszczenie, a potem harmonizację. Jeśli na którymś etapie coś pójdzie nie tak, wyślij maila z alertem”. Do tego dochodzą jeszcze możliwości (lepszego lub gorszego) monitoringu tych jobów oraz całych workflowów.

Przedstawiciele:

  1. Oozie
  2. Airflow
  3. Luigi
  4. Jenkins (częściowo)
  5. Pinball (stworzony przez Pinterest, natomiast nie jest obecnie aktywnie przez pinterest rozwijany)
  6. Step Functions (AWS)
  7. Workflows (GCP)
  8. Logic Apps (Azure)

Messaging

Czemu służą? Technologie do messagingu czy też kolejkowania, to technologie, które – nieco banalizując – są “punktem przesyłu” wielu danych. Wykorzystuje się je szczególnie często w kontekście przetwarzania streamingowego danych. Kiedy produkujemy jakieś dane, nie musimy się zastanawiać gdzie mają być dalej przetworzone. Wystarczy wykorzystać technologię kolejkowania i już. To jakie inne procesy podepną się pod ten “punkt przesyłu” to już zupełnie inna sprawa.

Krótki komentarz: Bardzo często technologie te zestawiane są z frameworkami do przetwarzania streamingowego. Wymienione zostały m.in. parę punktów wyżej (np. Spark Structured Streaming, Flink czy Kafka Streams). Warto tu dodać, że technologie tego typu są także często wykorzystywane w procesie IoT (internetu rzeczy – Internet of Things), gdy poszczególne urządzenia mogą raportować o swojej aktywności.

Przedstawiciele:

  1. Kafka
  2. RabbitMQ
  3. Event Hub (Azure)
  4. Kinesis (AWS)
  5. Pub/Sub (GCP)
  6. IBM MQ (IBM)

Technologie analityczne (BI – Business Intelligence)

Czemu służą? Za pomocą narzędzi analitycznych możemy tworzyć dashboardy, które pomogą nam analizować wcześniej zebrane dane.

Krótki komentarz: Warto pamiętać właśnie o takim aspekcie jak “wcześniej zebrane dane”. Nie wystarczy, że będziemy mieli aplikację analityczną. Aby w pełni wykorzystać jej potencjał, należy zawczasu pomyśleć o tym jak powinien wyglądać nasz pipeline, aby odpowiednie dane (nie za duże, nie za małe, odpowiednio ustrukturyzowane itd.) mogły zostać przez narzędzie BI zaciągnięte.

Przedstawiciele:

  1. Apache Superset
  2. Power BI (Azure)
  3. Amazon QuickSite (AWS)
  4. Google Data Studio (GCP)
  5. Holistics
  6. Looker
  7. Tableau

I jak się w tym wszystkim nie zagubić?

Mam nadzieję, że tym artykułem chociaż odrobinę pomogłem w uporządkowaniu spojrzenia na świat Big Data. Mnóstwo technologii nie zostało tutaj ujętych. Jest to jednak dobry punkt startowy;-). Jeśli widzisz potrzebę, aby coś tutaj dodać lub zmienić – daj sobie swobodę napisania o tym w komentarzu:-).

Jeśli chcesz tworzyć polską społeczność Big Data – odwiedź nas koniecznie na LinkedIn oraz zapisz się do newslettera!

 

Loading
Zrozumieć Sparka: cache vs persist

Zrozumieć Sparka: cache vs persist

W naszej podróży po Sparku musiała przyjść pora na ten przystanek. “Cache vs persist” to absolutnie podstawowe pytanie na każdej rozmowie rekrutacyjnej ze Sparka. Co ważniejsze – to naprawdę przydatne narzędzie dla każdego inżyniera big data, który posługuje się tym frameworkiem! Dzięki niemu przyspieszysz swojego joba, zmniejszysz ryzyko nieoczekiwanego fuckupu. No i najważniejsze – podczas code review pokażesz, że znasz się na rzeczy i nie jesteś tu z przypadku. Żartuję oczywiście.

Nie traćmy więc czasu i sprawdźmy co to za dobrodziejstwo, owe osławione cache i persist. Całą serię “zrozumieć sparka” poznasz tutaj.

Krótka powtórka – akcje i transformacje

Zanim przejdziemy do sedna sprawy – najpierw krótkie przypomnienie jak działa Spark – w pigułce. Aby to zrozumieć, fundamentalne są trzy rzeczy:

  1. Spark działa na swoich własnych strukturach, “kolekcjach”. To przede wszystkim RDD, które przypominają “listy” lub “tablice” (nie w konkrecie, natomiast grunt że nie jest to kolekcja typu mapa), ale także Datasety i Dataframy (które są aliasem dla Dataset[Row]). Napisałem, że “przede wszystkim”, ponieważ pod spodem DSów i DFów leżą właśnie RDD. To na tych strukturach musimy pracować, żeby całość ładnie działała.
  2. Na tych strukturach możemy wykonywać dwa typy operacji:
    • transformacje – czyli operacje, które wykonują pewne obliczenia, natomiast nie są wykonywane w momencie ich wywołania w kodzie.
    • akcje – operacje, które zwykle są jakimś rodzajem operacji wyjścia”. I co istotne – w tym momencie wykonywane są wszystkie transformacje po kolei.
  3. Takie podejście lazy evaluation zastosowane jest, aby Spark mógł odpowiednio zoptymalizować te operacje. Spisuje je w drzewku DAG (Directed Acyclic Graph – graf skierowany, acykliczny).

Tutaj pojawia się właśnie podstawowy problem – może się okazać, że akcji będziemy mieli kilka. I za każdym razem Spark będzie musiał wykonywać te same transformacje. To oczywiście powoduje, że job staje się niewydajny, a moc obliczeniowa jest niepotrzebnie przepalana.

Cache i persist w Sparku

I właśnie tutaj wkracza cachowanie. Możemy na danym zbiorze danych wywołać .cache() lub .persist() aby zachować go w pamięci. Gdyby potem pojawiło się kilka akcji, Spark będzie pobierał dane z konkretnego punktu, a nie procesował je wszystkimi transformacjami od początku.

cache vs persist

Aby to zrobić, mamy do dyspozycji dwie funkcje: cache() oraz persist(). Cóż – prawdę mówiąc jest jeszcze trzecia (.checkpoint()) ale na ten moment ją zostawimy;-). Tak więc powtórzmy – cache i persist pozwalają “zatrzymać” dataset w kodzie. Od momentu wywołania na naszych danych (RDD, Dataset lub Dataframe) cache lub persist – wywołanie akcji nie będzie skutkowało ponownym przeliczaniem transformacji, które były napisane przed tym punktem.

Pora jednak wyjaśnić sobie różnicę między cache a persist. Otóż – mówiąc prosto – persist pozwala nam ustawić poziom na jakim chcemy przechowywać dane (storage level), natomiast cache ma domyślne wywołanie. Tak naprawdę pod spodem cache wywołuje… właśnie persist!

Jaki storage level ma cache? To zależy od tego czy wywoujemy go na RDD czy Dataset/Dataframe. Jeśli RDD – domyślnie mamy MEMORY_ONLY, natomiast w przypadku Datasetów – MEMORY_AND_DISK.

Kod cache i persist dla Dataset i Dataframe

Jak wygląda wywołanie w kodzie? Przede wszystkim, jeśli wywołujemy cache() na Dataframe, to jest to najzwyklejszy w świecie alias dla wywołania funkcji persist(). I nie zmieniło się to od dawna. Poniżej kod z “bebechów” Sparka 2.4.3.

/**
   * Persist this Dataset with the default storage level (`MEMORY_AND_DISK`).
   *
   * @group basic
   * @since 1.6.0
   */
  def cache(): this.type = persist()

Jak wygląda natomiast persist()? W tym przypadku mamy do czynienia z dwoma funkcjami: pierwsza to funkcja, która przyjmuje argument typu StorageLevel, natomiast druga jest funkcją bez argumentów. Wywołuje ona funkcję cacheQuery() znajdującą się w CacheManager, która dokonuje całej “magii”. Jeśli nie podamy jej Storage Level, zostanie przypisany standardowy – czyli “MEMORY_AND_DISK”.

Poniżej implementacje obu funkcji persist().

def persist(): this.type = {
    sparkSession.sharedState.cacheManager.cacheQuery(this)
    this
  }

def persist(newLevel: StorageLevel): this.type = {
    sparkSession.sharedState.cacheManager.cacheQuery(this, None, newLevel)
    this
  }

Kod cache i presist dla RDD

W kontekście RDD cache() także jest aliasem dla persist(). Znów mamy także do czynienia z dwiema funkcjami persist() – jedną bezargumentową, drugą przyjmującą argument typu StorageLevel. Tym razem jednak różnica jest taka, że standardowym, domyślnym poziomem jest “MEMORY_ONLY” (nie jak w przypadku datasetów “MEMORY_AND_DISK”).

Można nawet dostrzec “niezwykle elegancki” komentarz, który pokusił się zostawić w samym środku funkcji jeden z inżynierów tworzących Sparka;-).

def persist(newLevel: StorageLevel): this.type = {
    if (isLocallyCheckpointed) {
      // This means the user previously called localCheckpoint(), which should have already
      // marked this RDD for persisting. Here we should override the old storage level with
      // one that is explicitly requested by the user (after adapting it to use disk).
      persist(LocalRDDCheckpointData.transformStorageLevel(newLevel), allowOverride = true)
    } else {
      persist(newLevel, allowOverride = false)
    }
  }

Storage levels

Z implementacji funkcji persist() wiemy, że kluczową sprawą jest Storage Level – czyli poziom na jakim chcemy przechowywać nasze dane. Oto jakie poziomy możemy wybrać:

  1. MEMORY_ONLY – przechowuje RDD lub Datasety jako deserializowane obiekty w pamięci JVM. Jeśli nie ma wystarczająco dużo dostępnej pamięci, niektóre partycje nie zostaną zapisane i zostaną potem ponownie obliczone w razie potrzeby.
  2. MEMORY_ONLY_2 – To samo co MEMORY_ONLY, natomiast każda partycja jest replikowana na dwa nody.
  3. MEMORY_ONLY_SER – to samo co MEMORY_ONLY, natomiast przechowuje dane jako serializowane obiekty w pamięci JVM. Potrzebuje mniej pamięci niż [1].
  4. MEMORY_ONLY_SER_2 – analogicznie.
  5. MEMORY_AND_DISK – w tym przypadku dane są przechowywane jako deserializowane obiekty w pamięci JVM. W tym przypadku jednak, w przeciwieństwie do [1], jeśli nie wystarczy miejsca, nadmiarowe partycje są przechowywane na dysku. To prowadzi do mniejszej wydajności (wolniejszy proces), ponieważ angażujemy tu operacje I/O.
  6. Analogicznie do 1-4 mamy także MEMORY_AND_DISK_SER, MEMORY_AND_DISK_2, MEMORY_AND_DISK_SER_2.
  7. DISK_ONLY – w tym przypadku dane są przechowywane jedynie na dysku. Oczywiście najwolniejszy wariant.
  8. DISK_ONLY_2 – analogicznie, tworzone są replikacje.

Zostań prawdziwym sparkowym wojownikiem

Jeśli dotarłeś do tego punktu, to prawdopodobnie jesteś naprawdę zainteresowany rozwojem w Sparku. Trzeba uczciwie powiedzieć, że to złożona, duża technologia. Jeśli chcesz zgłębić ją bardziej – przekonaj swojego szefa, żeby zapisał Ciebie i Twoich kolegów/koleżanki na szkolenie ze Sparka. Omawiamy całą budowę od podstaw, pracujemy dużo i intensywnie na ciekawych danych, a wszystko robimy w miłej, sympatycznej atmosferze;-) – Zajrzyj tutaj!

A jeśli chcesz pozostać z nami w kontakcie – zapisz się na newsletter lub obserwuj RDF na LinkedIn. Koniecznie, zrób to i razem twórzmy polską społeczność Big Data!

 

Loading
3 kroki do przodu: jak Big Data może pomóc Polsce w opanowaniu inflacji?

3 kroki do przodu: jak Big Data może pomóc Polsce w opanowaniu inflacji?

Inflacja po raz pierwszy (od dawna) weszła “pod strzechy” – nie jest już jedynie tematem dyskusji eksperckich. Wręcz przeciwnie – od kilku miesięcy jest bohaterką pierwszych stron gazet w całym kraju – z brukowcami włącznie. Powodem jest znaczne przyspieszenie utraty wartości waluty, co w przypadku naszej historii wzbudza szczególnie nieprzyjemne skojarzenia. Dodatkowo niektórzy zarzucają stronie rządowej, że oficjalna inflacja jest zaburzona.

Chciałbym dzisiaj zaproponować pewne rozwiązanie, które pomogłoby nam w analizie inflacji, a co za tym idzie – w odpowiedniej kontroli nad nią. Wszystko co poniżej to pewna ogólna wizja, która może posłużyć jako inspiracja. Jeśli jest chęć i zapotrzebowanie, bardzo chętnie się w tą wizję zagłębię architektonicznie i inżyniersko. Zachęcam także do kontaktu, jeśli TY jesteś osobą zainteresowaną tematem;-).

Krótka lekcja: jak liczona jest inflacja?

Czym jest inflacja?

Zanim przejdziemy do rozwiązania, zacznijmy od problemu. Czym jest inflacja i jak liczy ją GUS? Przede wszystkim najważniejsze to zrozumieć, że inflacja to spadek wartości pieniądza w czasie. Dzieje się tak w sposób praktyczny poprzez wzrost cen. Za ten sam chleb, wodę – musimy zapłacić więcej. I teraz to najważniejsze: inflacja jest inna dla każdego z nas. Każdy z nas ma bowiem inny portfel.

Jeśli zestawimy samotnego programistę oraz rodzinę wielodzietną, gdzie Tata zarabia jako architekt a Mama jako tłumaczka, ich budżety bedą zupełnie inne. Nawet jeśli zarabiają podobne kwoty, w rodzinie większy udział prawdopodobnie będzie na pieluchy, przedmioty szkolne i parę innych rzeczy. W przypadku młodego singla z solidną pensją, do tego z rozrywkowym podejściem do życia, znacznie większy procent budżetu zajmie alkohol, hotele, imprezy itd. Jeśli ceny alkoholi pójdą w górę o 40%, dla niektórych inflacja będzie nie do zniesienia, dla innych z kolei może nie zostać nawet zauważona.

Jak liczone jest CPI (inflacja konsumencka)?

Aby zaradzić tego typu problemom, GUS wylicza coś takiego jak CPI (Consumer Price Index) – indeks zmiany cen towarów i usług konsumpcyjnych. W skrócie mówimy inflacja CPI, czyli inflacja konsumencka. Warto zaznaczyć tutaj jeszcze, że zupełnie inna może być inflacja odczuwana na poziomie budżetów firm (a właściwie dla różnych firm jest także oczywiście różna).

Nie będziemy się tutaj wgryzać zbyt mocno w to jak dokładnie wylicza się inflację CPI. Skupimy się jedynie na paru najważniejszych rzeczach, które przydadzą nam się do późniejszej odpowiedzi na nasz inflacyjny problem;-). Dla zainteresowanych polecam solidniejsze omówienia:

  1. Najpierw u źródła – “Co warto wiedzieć o inflacji?” przez GUS.
  2. “Ile naprawdę wynosi inflacja?” Marcin Iwuć
  3. “GUS zaniża inflację? Ujawniamy!” – mBank
Koszyk inflacyjny 2021. Autor: Pawelmhm

Na nasze potrzeby powiedzmy sobie bardzo prosto, w jaki sposób GUS liczy CPI. Potrzeba do tego podstawowej rzeczy, czyli koszyka inflacyjnego. Taki koszyk to grupy towarów, które podlegają badaniu. GUS oblicza to na podstawie ankiet wysyłanych przez 30 000 osób. Już tutaj powstaje pewien problem – ankiety te mogą być wypełniane nierzetelnie.

Następnie, jeśli mamy już grupy produktów, musimy wiedzieć jak ich ceny zmieniają się w skali całego kraju. Aby to zrobić, wyposażeni w tablety ankieterzy, od 5 do 22 dnia każdego miesiąca, ruszają do akcji – a konkretnie do wytypowanych wcześniej punktów (np. sklepów spożywczych) w konkretnych rejonach. W 2019 roku badanie prowadzono w 207 rejonach w całej Polsce.

Big Data w służbie jej królew… to znaczy w służbie Rządu RP

Taka metodologia prowadzi do bardzo wielu wątpliwości. Badanie GUSu zakrojone jest na bardzo szeroką skalę. Mimo to jednak wciąż są to jedynie wybrane gospodarstwa oraz wybrane punkty sprzedaży. Chcę tutaj podkreślić, że nie podejrzewam naszych statystyków o manipulacje. Może jednak dałoby się zrobić tą samą pracę lepiej, bardziej precyzyjnie i znacznie mniejszym kosztem?

Cyfryzacja paragonowa – czyli jak Rząd przenosi nasze zakupy do baz danych?

Zanim przejdziemy dalej, powiedzmy najpierw coś, z czego być może większość z nas sobie nie zdaje sprawy. Ostatnie lata to stopniowe przechodzenie z tradycyjnych kas fiskalnych na kasy wirtualne oraz online. Na potrzeby artykułu nie będę wyjaśniał różnic. To co nas interesuje to fakt, że oba typy kas, zakupy raportują bezpośrednio do Rządu. Na ten moment objęta jest tym stanem rzeczy gastronomia, ale docelowo ma to objąć (wedle mojej wiedzy) także inne sektory posługujące się paragonami.

Jak zbudować system liczący inflację?

Przenieśmy się mentalnie do momentu, w którym każda, lub niemal każda sprzedaż jest odnotowywana przez państwo i zapisywana w tamtejszej bazie danych (najprawdopodobniej nierelacyjnej). Można to wykorzystać, aby zbudować system, który pozwoli nam liczyć inflację pozbawioną potrzeby wysyłania armii ankieterów. Co więcej – pozwoli to zrobić dokładniej oraz da nam potężne narzędzie analityczne!

Bazy danych / Storage

Przede wszystkim – zakładam, że wszystkie dane trzymane są w jakiejś nierelacyjnej bazie danych – na przykład w Apache HBase. Może to być jednak także rozproszony system plików, jsk HDFS. W takiej bazie powinny być trzymane wszystkie dane dotyczące transakcji – paragony, faktury, JPK itd. Osobną sprawą pozostają informacje dotyczące firm i inne dane, które są bardziej “ogólne” – dotykają mniejszej liczby podmiotów i nie są tak detaliczne.

W nowoczesnym systemie do liczenia inflacji Spark odegrałby kluczową rolę

Te dane, ze względu na niewielką liczbę i bardzo klarowną strukturę, można trzymać w bazie relacyjnej (np. PostgreSQL). Można jednak także jako osobną tabelę HBase, choć z przyczyn analitycznych (o których potem) znacznie lepiej będzie zrobić to w bazie relacyjnej. Można także zastosować rozwiązanie hybrydowe – wszystkie dane dotyczące firm trzymać w bazie nierelacyjnej, jako swoistym “magazynie”, natomiast pewną wyspecyfikowaną, odchudzoną esencję – w bazie relacyjnej.

Dodatkowo zakładam, że koszyk inflacyjny jest już wcześniej przygotowany. Da się ten proces uprościć poprzez informatyzację ankiet – jest to już zresztą robione (według wiedzy jaką mam). Taki koszyk można trzymać w bazie relacyjnej, ze względu na relatywnie niewielką liczbę danych (W 2021 roku zawierał on 12 grup produktów. Nawet jeśli w każdej z nich byłoby parę tysięcy produktów, liczby będą  sięgać maksymalnie kilkudziesięciu tysięcy, niezbyt rozbudowanych rekordów).

W dalszej części dodam jeszcze możliwość tworzenia kolejnych koszyków i w takiej sytuacji prawdopodobnie należałoby już je wydzielić do osobnej bazy nierelacyjnej. W dalszym ciągu jednak ogólne adnotacje mogłyby pozostać w bazie relacyjnej (tak, żeby można było np. sprawnie wyciągnąć dane z HBase po rowkey, czyli id).

Jeśli zdecydujemy się na zastosowanie bazy row-key, jak HBase, uważam że i tak zaistnieje potrzeba wykorzystania HDFS (może być tak, że w HBase będzie wygodniej pierwotnie umieszczać pliki paragonowe). Będziemy tu umieszczać kolejne etapy przetworzonych danych z konkretnych okresów.

Jeszcze inną opcją jest zastosowanie Apache Kudu, który mógłby nieco zrównoważyć problemy HBase i HDFS i zastąpić oba byty w naszym systemie. Jak widać, opcji jest dużo;-)

Przygotowanie danych

Kiedy mamy już dane zebrane w przynajmniej dwóch miejscach, powinniśmy je przygotować. Same z siebie stanowią jedynie zbiór danych, głównie tekstowych. W drugim  etapie należy te dane przetworzyć, oczyścić i doprowadzić do postaci, w jakiej ponownie będziemy mogli dokonać już finalnej analizy inflacji.

 

Finałem tego etapu powinny być dane, które będą pogrupowane tak, żebyśmy mogli je później wykorzystać. Wstępna, proponowana struktura wyglądać może następująco:

  1. Okres badania
    1. Grupa produktów
      1. Punkt sprzedaży
        1. towar

Musimy więc wyciągnąć surowe dane (z HBase), przetworzyć je, a następnie zapisać jako osobny zestaw – proponuję tu HDFS. Jak to uczynić? Możemy do tego celu wykorzystać Apache Spark oraz connector HBase Spark przygotowany przez Clouderę. Następnie dane muszą być poddane serii transformacji, dzięki którym dane:

  • Zostaną wydzielone jako osobne paragony
  • Zostaną podzielone na produkty
  • Poddane będą oczyszczeniu z wszelkich “śmieci” uniemożliwiających dalszą analizę
  • Wykryta zostanie grupa produktów dla każdego z nich
  • Pogrupowane zostaną po grupie produktów oraz okresie

Na końcu dane zapisujemy do HDFS. Wstępna struktura katalogów:

  1. Dane przygotowane
    1. Dane całościowe
      1. okres
        1. Tutaj umieszczamy plik *.parquet lub *.orc

Liczenie inflacji

Skoro mamy już przygotowane dane, czas policzyć inflację. Do tego celu także wykorzystamy Apache Spark, dzięki któremu możemy w zrównoleglony sposób przetwarzać dane. W najbardziej ogólnym kształcie sprawa wygląda dość prosto:

  1. Łączymy się z bazą danych (relacyjną), w której trzymamy konkretny koszyk
  2. Wybieramy okres za jaki chcemy policzyć inflację
  3. Pobieramy dane z HDFS/Kudu, które okresem odpowiadają [2].
  4. Wybieramy grupy produktów zgodne z koszykiem [1]
  5. Przeliczamy inflację za pomocą danych, które są już solidnie przygotowane.

I teraz ważne: efekt zapisujemy do relacyjnej bazy danych.

Analiza

Czemu akurat do relacyjnej bazy danych? Odpowiedź wydaje się oczywista:

  1. Dane będą niewielkie – choć od raz umożna powiedzieć, że z naszego procesu można wycisnąć więcej niż tylko wynik 6.8% 😉 – jest też sporo rzeczy przy okazji, takie jak jakie produkty wzrosły najmocniej, w jakich regionach, co ma największą zmiennośći itd.
  2. Dane będą solidnie ustrukturyzowane
  3. Dane umieszczone w relacyjnych bazach pozwalają na znacznie lepszą i prostszą analizę.

I właśnie ten trzeci punkt powinien nas zainteresować najmocniej. Można bowiem na klastrze zainstalować jakieś narzędzie BI, spiąć z bazą i… udostępnić analitykom. Takim narzędziem może być (znów open sourcowy) Apache Superset. Przynajmniej na dobry początek. W drugim rzucie należałoby się pokusić o zbudowanie dedykowanej aplikacji analitycznej. To jednak można zostawić na  później. Na etap, w którym analitycy będą już zaznajomieni z systemem i będą mogli włączyć się w czynny proces budowy nowego narzędzia.

Rozwój

Wyżej opisałem podstawowy kształt systemu do badania inflacji. Warto jednak nie zatrzymywać się na tym i pomyśleć jak można tą analizę wynieść na wyższy poziom. Podstawową prawdą na temat inflacji jest to, że każdy ma swoją, więc nie da się dokładnie obliczać jak pieniądz traci na wartości. Cóż… dlaczego nie możnaby tego zmienić? Wszak mając do dyspozycji WSZYSTKIE (oczywiście upraszczając) dane, można zrobić “nieskończenie wiele” koszyków inflacyjnych.

Czym mogłoby być te koszyki inflacyjne? Kilka propozycji.

  1. Dlaczego nie wykorzystać rozwoju technologii Big Datowych do podnoszenia świadomości finansowej oraz obywatelskiej Polaków? Niech każdy będzie mógł na specjalnym portalu wyklikać swój własny koszyk i regularnie otrzymywać powiadomienia dotyczące swojej własnej inflacji. Takie podejście byłoby bardzo nowatorskie i z pewnością wybilibyśmy się na tle innych państw.
  2. Koszyki mogą powstawać dla różnych grup społecznych. Dzięki temu można będzie dokładniej badać przyczyny rozwarstwienia społecznego, niż jedynie osławiony współczynnik Giniego, czy także inne, powiedzmy sobie szczerze – skromne narzędzia, na podstawie których wyciągane są bardzo mocne dane.
  3. Koszyki dla firm – oczywistym jest, że firmy mają znacząco różny koszyk od ludzi. Jest oczywiście inflacja przemysłowa (PPI), natomiast dotyczy ona produkcji przemysłowej (i to w dośćwąskim zakresie). Dzięki wyborowi produktów w “naszym systemie” można będzie obliczyć także jak bardzo wartość pieniądza spada dla różnych rodzajów firm.

Potencjalne korzyści

Powyżej opisałem przykładowy system, który pozwoliłby nam wynieść analizę inflacji na zupełnie inny poziom. Poniżej chciałbym zebrać w jedno miejsce kilka najważniejszych korzyści, jakie niosłyby takie zmiany:

  1. Mniejsze koszty – cykliczne uruchamianie jobów mających na celu sprawdzenie inflacji to koszt znacznie mniejszy, niż utrzymywanie armii ankieterów.
  2. Dokładniejsza inflacja – precyzja liczenia inflacji weszłaby na zupełnie inny poziom. Oczywiście na początku należałoby przez kilka lat liczyć w obu systemach, aby sprawdzić jak bardzo duże są różnice.
  3. Różne modele inflacji – a więc koszyki o których pisałem powyżej, które spowodują, że przestanie być prawdziwa teza o tym, że “liczenie prawdziwej inflacji nie jest możliwe”.
  4. Regionalizacja inflacji – Inflacja inflacji nie jest równa. Zupełnie inaczej ceny mogą się kształtować w różnych województwach. Również i to mógłby liczyć “nasz system”.
  5. Większe możliwości analityczne – stopy nie są jedynym narzędziem, który można użyć w walce z inflacją. Ekonomiści wskazują, że poza wysokością stóp procentowych także inne czynniki wpływają na inflację. Są to m.in. skala dodruku pieniądza, rozwój świadczeń socjalnych, regulacje gospodarcze czy wysokość podatków pośrednich. Dzięki Big Datowemu systemowi, Rząd zyskałby znacznie większe możliwości analityczne do śledzenia wpływu swoich zmian na gospodarkę.
  6. Wyższe morale i poczucie, że państwo gra “w pierwszej lidze” – unowocześnia swoje działanie na poziom niespotykany w innych krajach.

Potencjalne zagrożenia

Rozwój zaawansowanych systemów to oczywiście także zagrożenia. O tych najważniejszych poniżej:

  1. Możliwości analityczne muszą wiązać się z większą inwigilacją – i jest to chyba największy problem. Im większe możliwości analizy chcemy sobie zafundować, tym głębiej trzeba zinfiltrować życie obywateli. Oczywiście przed infiltracją współcześnie uciec się nie da, ale należy zawsze mieć na uwadze mądre wyważanie.
  2. Koszt utrzymania systemu – To system zbierania bardzo dużych danych i analizy ich. Wymagać będzie zaawansowanych klastrów obliczeniowych oraz odpowiedniego zespołu administracyjnego. Na pensjach – dodajmy – zdecydowanie rynkowych, nie urzędniczych.
  3. Kwestia bezpieczeństwa – czasami zapominamy, że informatyzacja państwa to problem w bezpieczeństwie danych. Jeśli jesnak dane dotyczące zakupów i tak miałyby być zbierane – czemu ich nie wykorzystać?

Big Data to nasza wielka szansa – także w sektorze rządowym

Jesteśmy Państwem, które w wielu miejscach wiecznie próbuje nadgonić resztę (choć w wielu także tą resztę przegoniło). Big Data może pozwolić na działać lepiej, szybciej, precyzyjniej i… taniej. Wykorzystajmy tą szansę. Za nami poglądowy pomysł na to jak zbudować jeden z takich systemów, które mogłyby pomóc nam budować nowoczesne państwo. Jeśli chcesz dowiadywać się o innych pomysłach, które ukazują Big Data w odpowiednim kontekście, zapraszam na nasz profil LinkedIn oraz do zapisania się na newsletter RDF. Do zobaczenia na szlaku BD!;-)

 

Loading
Google inwestuje nad Wisłą – współczesna montownia, czy stajnia wybitnych umysłów?

Google inwestuje nad Wisłą – współczesna montownia, czy stajnia wybitnych umysłów?

Google dokonało właśnie kolejnej dużej inwestycji w Polsce. Tym razem na tyle dużej, że potrzebowało wynająć 14 pięter w prestiżowym budynku The Warsaw Hub C. Taka informacja zawsze przyjemnie głaszcze nas po głowach łechcząc nieco nasze ego. Pytanie jednak, czy na pewno inwestycja powinna nas aż tak bardzo cieszyć? Czy może jednak na wyrost są szumne nagłówki o “wiekopomnych centrach rozwoju” oraz “skoku technologicznym”, za każdym razem gdy jakiś gigant technologiczny zechce zostawić tu nieco dolarów? Zapraszam na krótką notkę;-)

Po co Google wynajęło aż 14 pięter luksusowego wieżowca?

Niewątpliwie informacja o tym, że Google wynajęło kilkanaście pięter jest elektryzująca. Firma poinformowała, że ma zamiar zbudować w niej Centrum Rozwoju Technologii Google Cloud. W ramach tego posunięcia rekrutowani będą inżynierowie nie tylko z Polski, ale także zza granicy. Organizacja przypomina, że obecnie zatrudnia w naszym kraju ponad 900 pracowników, z czego pokaźną część stanowią inżynierowie.

Biuro jest zaaranżowane w stylu znanym nam dobrze z amerykańskich filmów o gigantach technologicznych. Każde z pięter odnosi się do któregoś regionu Polski. Na najwyższej kondygnacji spotykać się będzie zarząd, zaś do dyspozycji pracowników oddana została kawiarnia oraz taras z widokiem na miasto.

Siłownia w biurze Google w The Warsaw Hub, materiały prasowe, fot: Jacek Waszkiewicz

Poza tym ludzie pracujący w polskim oddziale Google będą mieli możliwość skorzystać z siłowni (także z widokiem na Warszawę), salonu do masażu, salonu gier, biblioteki czy miejsc dla rodziców z dziećmi. Biurowiec posiada także strzeżony parking dla rowerów oraz wtyczki do ładowania samochodów elektrycznych. Pierwsi pracownicy już pracują z nowego biura, ale to dopiero początek – zatrudnienie dopiero rusza.

Czym dokładnie jest nowa inwestycja Google w Warszawie?

Skoro znamy już standard życia pracowników Google w nowym warszawskim biurze, czas postawić pytanie z początku: czy jest się z czego AŻ TAK cieszyć? W końcu fajne miejsce pracy to nie wszystko – możemy być jedynie listkiem figowym, który zamaskuje fakt, że pracownicy traktowani są po prostu jako zwykła tania siła robocza, użyta jedynie do obsługi TYCH PRAWDZIWYCH centrów technologicznych – osadzonych gdzieś w Berlinie czy Paryżu.

Jak będzie naprawdę, życie pokaże. Moim zdaniem jednak – zdecydowanie jest się z czego cieszyć. W przeciwieństwie do budowy w Polsce kolejnych chmurowych Data Center (co samo w sobie jest oczywiście bardzo dobre, ale rewolucji nie wnosi), inwestycja Google to krok zdecydowanie jakościowy.

Jesteśmy na blogu Big Datowym, więc moje spojrzenie ma pewne skrzywienie w tą stronę. Google jako organizacja jest fundamentem branży Big Data i jej wkład jest nie do przecenienia. Jest także trzecim największym dostawcą usług chmurowych (GCP to ok. 10% światowego tortu) – zaraz po AWS oraz Azure. Rozwój technologi cloudowych to obecnie jeden z motorów rozwoju naszej branży – a być może nawet więcej, rozwoju współczesnego świata w ogóle (choć nie ma co traktować chmury “magicznie”zapraszam do krótkiego zestawienia cloud vs. on premise oraz pogłębionej analizy na ten temat). W Polsce powstanie zaś… Centrum Rozwoju Technologii Google Cloud. I będzie największym tego typu miejscem w całej Europie.

Google w The Warsaw HUB
Centrum Rozwoju Technologii Google Cloud w The Warsaw Hub, materiały prasowe, fot: Jacek Waszkiewicz

Nad czym będą pracować inżynierowie w Centrum Rozwoju Technologii Google Cloud?

Zdecydowanie nie będzie to ośrodek typu “call-center”. Inżynierowie mają rozwijać wewnętrzne technologie Big Data oraz dbać o to, żeby Google Cloud Platform zdobywało kolejne kawałki rynkowego tortu.

Nad czym dokładnie będą pracować, oczywiście pozostaje w pewnej mierze tajemnicą. Jest jednak kilka elementów, które udało się “wyłuskać”, a które mogą zaciekawić pasjonatów. Poniżej kilka z nich:

  1. Praca nad usługami dynamicznie przydzielającymi moc obliczeniową dla klientów biznesowych.
  2. Rozwój maszyn wirtualnych
  3. Rozwijanie Google Compute Engine – czym Polacy zajmowali się już w przeszłości
  4. Rozwój Google Kubernetes Engine – nad czym także już pracowali. Kubernetesa znają chyba wszyscy w Big Data (lub chociaż o nim słyszeli). Miło będzie pracować z tą technologią mając świadomość, że chociaż częściowo powstaje w Warszawie;-).
  5. Rozwój globalnej infrastruktury sieciowej, która jest odpowiedzialna za łączenie serwerów i serwisów.
  6. Praca nad rozwiązaniami z zakresu analizy danych – można przypuszczać, że chodzi tu o rozwiązania typu Business Intelligence, takie jak Looker.
Image
Centrum Rozwoju Technologii Google Cloud w The Warsaw Hub, materiały prasowe, fot: Jacek Waszkiewicz

Inwestycja Google w Warszawie to także szkolenia

Poza pracą stricte inżynierską, Google będzie także edukować i dzielić się swoim know-how. W tym celu nowie biuro wyposażone zostało w dwupiętrowe audytorium na 100 miejsc, trzy duże sale warsztatowe oraz pracownię UXLab, która umożliwia prowadzenie warsztatów z UX design produktów i usług. Działalność edukacyjna będzie miała na celu rozwój kompetencji inżynierskich z zakresu przetwarzania chmurowego (cloud computing).

Poza szkoleniami indywidualnymi, Google ma zamiar pracować z firmami zainteresowanymi wykorzystaniem możliwości chmurowych. Dzięki temu nowe centrum może stać się pewnym silnikiem zmian w polskiej gospodarce, w kierunku usług chmurowych.

Niektórzy mogą wpaść w zachwyt, szczególnie biorąc pod uwagę chęć szkoleń i dzielenia się swoim know-how. Oczywiście Google nie będzie czynić tego charytatywnie. To działanie stricte biznesowe – będzie czerpać z tego zyski, choć pewnie w wielu miejscach w nieco dalszym terminie. Nawet jeśli szkolenia będą darmowe, firma będzie zyskiwać poprzez szybsze pozyskiwanie dobrych pracowników oraz klientów Google Cloud Platform.

Czy to źle? Absolutnie nie – takie działanie jest win-win. Wygrywamy wszyscy, bo organizacja się rozwija, osiąga zyski i wpływy, my zaś modernizujemy firmy i społeczeństwo. No i – miejmy nadzieję – zyskujemy wszyscy wpływy w budżecie państwa;-)

Blog RDF to miejsce, gdzie tematy techniczne spotykają się z biznesowymi. W wymiarze Big Data rzecz jasna. Dołącz do newslettera i razem budujmy polską społeczność Big Data;-).

 

Loading
Zrozumieć Sparka: czym różnią się podobne mechanizmy? Distinct vs dropDuplicates i inne.

Zrozumieć Sparka: czym różnią się podobne mechanizmy? Distinct vs dropDuplicates i inne.

Pracując ze sparkiem bardzo często spotykamy mechanizmy, które budzą naszą konsternację z powodu bardzo dużego podobieństwa. Czy każde z tych mechanizmów ma inne działanie? Jeśli tak, to jakie są praktyczne różnice? Postanowiłem zanurkować nieco w kod i sprawdzić najbardziej popularne funkcje. Zapraszam!

Aha… to oczywiście artykuł w serii “Zrozumieć Sparka”. Poprzednio omawiałem joiny – zainteresowanych zapraszam tutaj.

Porządkujemy – czyli orderBy vs sort

Pierwszy mechanizm, który bierzemy na tapet to sortowanie. Spark daje nam przynajmniej dwie funkcje, które spełniają to zadanie: orderBy() oraz sort(). Czym się różnią?

Tutaj sprawa jest banalnie prosta – orderBy() to po prostu alias dla sort(). Mówi nam o tym poniższy fragment kodu:

/**
   * Returns a new Dataset sorted by the given expressions.
   * This is an alias of the `sort` function.
   *
   * @group typedrel
   * @since 2.0.0
   */
  @scala.annotation.varargs
  def orderBy(sortExprs: Column*): Dataset[T] = sort(sortExprs : _*)

Mamy dwie funkcje orderBy() – obie wywołują sort().

Zmieniamy nazwy kolumn: withColumnRenamed vs alias

Załóżmy, że mamy dataframe i nie pasuje nam nazwa jednej z kolumn. W takiej sytuacji mamy do dyspozycji dwie – cztery metody: withColumnRenamed(), alias(), as() oraz name(). Zajmijmy się najpierw różnicami między withColumnRenamed oraz alias.

  1. Zwracany typ:
    • alias() to funkcja zwracająca typ Column,
    • withColumnRenamed() zwraca Dataset[Row] (czyli Dataframe).
  2. Co dzieje się w środku:
    • alias() jest jedynie… aliasem dla funkcji name(). Nie robi nic innego. O tym co robi name() rozdział niżej.
    • withColumnRenamed() ma logikę, która zmienia schemat. Warto dodać, że sama zmiana nazwy kolumny dzieje się poprzez wykorzystanie funkcji as(). To – zdradzę przedwcześnie – jest alias dla aliasu. A alias jest aliasem dla name(). WOW! No nic… poniżej podrzucam jak zbudowana jest funkcja withColumnRenamed():

      def withColumnRenamed(existingName: String, newName: String): DataFrame = {
          val resolver = sparkSession.sessionState.analyzer.resolver
          val output = queryExecution.analyzed.output
          val shouldRename = output.exists(f => resolver(f.name, existingName))
          if (shouldRename) {
            val columns = output.map { col =>
              if (resolver(col.name, existingName)) {
                Column(col).as(newName)
              } else {
                Column(col)
              }
            }
            select(columns : _*)
          } else {
            toDF()
          }
        }
  3. Kiedy stosować:
    • alias() stosujemy wtedy, gdy możemy odwołać się do konkretnej kolumny – klasycznym przykładem jest zastosowanie funkcji select(). Tak jak poniżej:
      peopleDF.select(col("name").alias("firstName"))
    • withColumnRenamed() wywołujemy na Dataframe. W efekcie dostajemy nowy Dataframe ze zmienioną nazwą kolumny. Wygląda to tak jak poniżej:
      peopleDF.withColumnRenamed("name", "firstName")

 

Zmienianie nazw ciąg dalszy – as vs alias vs name

Skoro już znamy różnice między withColumnRenamed oraz alias, warto przejść do kolejnych meandrów sparkowego labiryntu. Tym razem poszukajmy czym różnią się od siebie trzy funkcje: as(), alias() oraz name().

Otóż, tym razem sprawa jest prostsza. Albo i bardziej zaskakująca, sam(/a) już musisz to rozstrzygnąć. Otóż – nie ma różnic. A konkretniej as() jest aliasem dla name(), tak samo jak alias() jest aliasem dla name().

Funkcja name() natomiast jest dość prostym mechanizmem. Jeśli obecna kolumna ma jakieś metadane powiązane z nią, zostaną propagowane na nową kolumnę. W  implementacji użyty jest Alias – warto jednak pamiętać, że nie chodzi tu o funkcję alias(), a o case classę Alias. Implementacja funkcji name() poniżej:

def name(alias: String): Column = withExpr {
    expr match {
      case ne: NamedExpression => Alias(expr, alias)(explicitMetadata = Some(ne.metadata))
      case other => Alias(other, alias)()
    }
  }

Usuwamy duplikaty w Sparku – distinct vs dropDuplicates

Prędzej czy później przychodzi taki moment, że w efekcie różnych transformacji dostajemy identyczne obiekty w naszych dataframach. Jest to szczególnie uciążliwe, gdy musimy pracować na unikatowych danych. Poza tym jednak najzwyczajniej w świecie niepotrzebnie zajmują one miejsce. Aby tego uniknąć, usuwamy duplikaty. Tylko jak to zrobić w Sparku? Istnieją dwa sposoby – distinct() oraz dropDuplicates().

Distinct jest najprostszą formą usuwania duplikatów. Tutaj sprawa jest prosta – na dataframe wywołujemy funkcję distinct(), po czym Spark wyszukuje rekordy, które w całości się pokrywają i zostawia tylko jeden z nich. Tak więc w tym przypadku wszystkie kolumny muszą się pokrywać, aby rekord został uznany za duplikat.

Implementacja:

sampleDF.distinct()

Sprawa ma się nieco inaczej, jeśli weźmiemy na warsztat funkcję dropDuplicates(). W tym przypadku możemy wybrać które kolumny bierzemy pod uwagę. W takiej sytuacji “duplikatem” może być np. osoba o tym samym imieniu i nazwisku, ale z innym PESELem.

Implementacja z przykładowymi kolumnami:

sampleDF.dropDuplicates("name", "age")

Co ważne – po takim wywołaniu, zwrócony dataframe oczywiście będzie zawierał wszystkie kolumny, nie tylko wyszczególnione w “dropDuplicates()”.

Tak więc, podsumowując – różnica polega na tym, że distinct() bierze wszystkie kolumny, zaś dropDuplicates() pozwala nam wybrać o które kolumny chodzi.

Explode vs ExplodeOuter

Niekiedy posługując się dataframe, stykamy się z kolumną, która zawiera listę – np. listę imion, liczb itd. Czasami w takiej sytuacji potrzebujemy, żeby te dane znalazły się w osobnych wierszach. Aby to zrobić, używamy funkcji explode – a właściwie jednej z dwóch “eksplodujących” funkcji.

Różnica jest bardzo prosta: explode() pominie nulle, natomiast explode_outer() rozbuduje naszą strukturę także o nulle.

Tak więc, jeśli chcemy rozbić nasze dane pomijając pry tym wartości typu null – wybierzemy explode().

Podsumowanie

Mam nadzieję, że zestawienie powyższych metod rozwieje różne wątpliwości, które mogą niekiedy przychodzić. Spark to złożona, duża technologia. Jeśli chcesz zgłębić ją bardziej – przekonaj swojego szefa, żeby zapisał Ciebie i Twoich kolegów/koleżanki na szkolenie ze Sparka. Omawiamy całą budowę od podstaw, pracujemy na ciekawych danych, a wszystko robimy w miłej, sympatycznej atmosferze;-) – Zajrzyj tutaj!

A jeśli chcesz pozostać z nami w kontakcie – zapisz się na newsletter. Koniecznie, zrób to!

 

Loading